Site icon Climate Etc.

Certainly not!

by Judith Curry

Good science requires cultivating doubt and finding pleasure in mystery. – Stuart Firestein

Stuart Firestein has a blog post entitled Certainly not!, which is based on his book Ignorance: How it Drives Science that was discussed in a previous Climate Etc. post Ignorance: the true engine of science.  Excerpts from Firestein’s essay:

Physicist Isidor Isaac Rabi grew up in an immigrant family in New York City in the early 20th century. When he came home from school his mother would not ask him what he learned that day, as his friends’ mothers did. She would ask him, “Did you ask any good questions today?” Apparently Rabi asked many good questions. In 1944, at age 46, he was awarded the Nobel Prize in Physics for developing nuclear magnetic resonance, a technique for probing the atomic nucleus that was later developed into the medical diagnostic technology known as MRI, magnetic resonance imaging.

Questions, not answers, are how science makes progress. Science may appear to serve up answers in its huge textbooks, volumes of encyclopedias, and now online resources. (Is there anything Wikipedia doesn’t know?) And it may seem a pretty impressive collection. But it also makes science appear as a scary, insurmountable mountain of facts, rather than the playground of inquiry it actually is.

Questions, on the other hand, go places, take you down new avenues, generate curiosity and inspiration. They are the critical ingredients to new experiments. Of course, answers are important, but too often they are treated as an end. Think about the word “conclusion.” It is an answer drawn from data, but it can denote the end of the process, of the story, of the adventure. It is at once a determination and a termination. We may hear about the conclusive results in this or that study, or the conclusions to be drawn from this work, but the last thing a scientist wants is a conclusion in the sense of, “there ain’t no more to do.” For all the talk about drawing conclusions in scientific studies, there is relatively little in science that is conclusive.

The contemporary view of science puts too much emphasis on answers. What leads to good science is uncertainty. That doesn’t mean scientists shouldn’t be certain about their findings. It means they should be comfortable that their findings are not the final answer.

Negative Capability is just as important to the scientist, who should always find him- or herself in a state of “uncertainty without irritability.” Scientists do reach after fact and reason, but it is often when they are most uncertain that the reaching is the most imaginative, unhindered by a common-sense certainty of how something should work. Being a scientist requires having faith in uncertainty, finding pleasure in mystery, and learning to cultivate doubt. There is no surer way to screw up an experiment than to be certain of its outcome.

But don’t scientists know a lot of things? They do. But lawyers, engineers, accountants, and electricians know a lot of things. Scientists, however, do something different with what they know. They don’t defend people, or treat people, or make money for people (or, I’m sorry to say, for themselves very often). They make new questions. Facts are not just to be accumulated. They are raw material for making improved, more sophisticated questions with new unknowns. Science, good science, creates as much ignorance as it does knowledge. Thoroughly conscious ignorance is the prelude to every great advance in science.

Any scientist will tell you that facts are the weakest link in the scientific edifice. They shift and change, regularly. You know that too. One day grapefruit is good for you and the next it can have deadly interactions with common drugs that can cause liver failure. Facts change, revisions are made, but it adds up to progress. In science, revision is a victory. And that process of revision has accelerated significantly in the last few decades.

Sometimes the most difficult task in science is convincing too confident researchers that they don’t know something they are sure of. Stephen Hawking has called the “greatest enemy of knowledge” not ignorance, but “the illusion of knowledge.”

There is no surer way to screw up an experiment than to be certain of its outcome.

This may seem disconcerting. What can we depend on? Facts change, authority is unreliable, viewpoints are modified, consensus dissipates. But it is important to recognize that new facts don’t bring down the whole edifice. Einstein’s theory of relativity didn’t undo Newton’s Principia, it extended it and made it more useful.

Of course, uncertainty in science can be abused and twisted to nefarious purposes. In his recent book, Golden Holocaust, Stanford historian Robert Proctor showed that tobacco companies willfully used claims of insufficient data and incomplete knowledge to block regulation of the sales of tobacco products. Indeed, most of the research showing that tobacco was harmful was paid for by the tobacco companies, with the knowledge that it would be very difficult to find a conclusive (that word again) causal effect between tobacco and cancer. Scientists still don’t know exactly how tobacco products cause cancer, merely that there is an overwhelming and highly predictable correlation between the two. As Proctor showed, tobacco companies persistently strove to keep the public in a state of uncertainty with the claim that more research was necessary.

Parallels with the current debate over the effects of human activity on the world’s climate are obvious. There is little question that human activity is causing the earth’s atmosphere to warm up and that this will lead to changes in climate patterns. The precise nature of those changes, the level of warming that may be acceptable, and the ability to reverse the changes remain unsettled. There are conflicting models, but none of them suggest that anthropogenic warming is not occurring—only what the results of this warming will be and when precisely they will take effect. This uncertainty has given some industry leaders and politicians, with their own special interests, an opening to declare that global warming is not anthropogenic. This is not only disingenuous, it is damaging in the worst way because it creates a wrongheaded notion about science in the public mind.

Unsettled science is not unsound science. Scientists tend to emphasize disagreements because this is where the work remains to be done. Why talk about what we know, when all our effort should be directed at what we don’t know? The highly accomplished Marie Curie, in a letter to her brother, noted that “one never thinks about what has been done, only what remains to be done.” Problems don’t get solved by sitting around and nodding in agreement. They are solved, indeed they are understood to be problems in the first place, by talking about them.

But short of becoming an expert in each of many disparate fields, unlikely for even the cleverest among us, how can we participate? Well, we can be more like scientists in one crucial area: the acceptance of uncertainty. Indeed, it is the too-well-crafted explanation, the one that explains everything, that should set off red flags, warning us that we are likely being deceived, misled, or outright duped.

I’m a neurobiologist, but I don’t know any more about quantum physics than any other non-physicist, nor about computability limits than anyone without a degree in computer science, nor about a thousand other things outside my narrow expertise. But as a scientist, I know the value of doubt and the danger of certainty. In science, dumb and ignorant are not the same thing.

To be realistically engaged with science means appreciating doubt and uncertainty as the necessary precursor to knowledge and illumination. We must learn to traffic in the unknown, be comfortable with uncertainty, take pleasure in mystery. While searching for knowledge we must abide by ignorance for an indefinite period. Above all, as Mrs. Rabi knew more than 100 years ago, we need to know how to ask a good question.

JC comment:  I find most of this essay to be exhilarating, but Firestein lost me on his discussion of tobacco and climate change; IMO Firestein missed a big opportunity to put climate science and the debate over climate change into a more meaningful context about asking questions, etc.

 

Exit mobile version